
GPU-Based Texture Flow Visualization

Oleg A. Potiy∗

Computer Center
Rostov State University, Rostov-on-Don, Russia

Alexey A. Anikanov†

Computer Center
Rostov State University, Rostov-on-Don, Russia

Abstract

The current state-of-the-art graphic hardware from world leading
3D industry manufactures offers a way to configure and to control
geometry and texture processing pipeline. As a result a possibility
to use these video cards as a platform for scientific visualization
has risen. The objective of this paper is to present current efforts
on developing two texture visualization techniques for unsteady 2D
and 3D vector fields, employing graphic processing unit (GPU)
with OpenGL extension ARBvertexprogram. The program that
implements suggested GPU-based 2D visualization procedure is
presented. Methods presented in this work are a straight-forward
extension of the Lagrangian-Eulerian advection technique. GPU
exploit allows us to increase method performance and gain higher
abstraction level in visualization applications.

Keywords: GPU, GPU based visualization, texture flow visual-
ization

1 Introduction

For a long time quality texture visualization in real time scale has
been performed on the high-end graphic stations. Main advan-
tages of this technique are the continuity of image generated and
the uniform cover of whole vector field domain to be visualized.
Texture-based visualization methods are free from geometry-based
technique characteristic restrictions and artifacts, such as chaotic
line overlapping near field critical points and blank holes in case
of low-speed flow. Furthermore, some of texture methods enable
visualization of unsteady vector field.

One of the pioneer achievements in field of texture visualization
was developing of the so-called spot noise technique by Jarke van
Wijk [van Wijk 1991]. Further investigations in this branch of sci-
entific visualization have led to LIC algorithm [Cabral and Leedom
1993] with many variations, including its propagation to a 3D case
followed by accurate volumetric rendering. Once developed, LIC
technique has widely spread in vector field visualization due to high
resolution visions generated. However, this method requires high
computational power systems to be effectively run on.

Since techniques employing graphic cards hardware capacities had
been developed, it has become possible to perform quality texture
visualization on a standard consumer PC-workstation in real time
scale. One of the first successful implementations of this concept
was Jack van Vijk work [van Wijk 2002] in which he presented
fast image based texture visualization algorithm - IBFV. The main

∗e-mail: opotiy@mail.ru
†e-mail:anikanov@rsu.ru

idea of this technique is the iterative image distortion, performed
by texture mapping on deformed mesh by means of OpenGL API.
Every mesh vertex is shifted according vector field value placed
in this location. Among recent achievements in flow visualization
is the development hardware-driven technique (3D IBFV) for vi-
sualization of stationary 3D vector field [Telea and van Wijk 2003]
and software texture advection for 3D unsteady case [Anikanov and
Potiy 2003]. Arising computational power and increasing program-
ming flexibility of modern 3D graphic hardware allows to continue
research in the field of hardware-driven flow visualization. Due to
this new features offered by graphics hardware, many popular vi-
sualization algorithms are now being implemented efficiently on a
GPU side.

The main goal of this work is the development of techniques with
higher performance, especially in case of unsteady 3D field, and
better cognition ability to provide user insight into structure and
topology of complex formations. All methods presented in the pa-
per are implemented using power of OpenGL API and its exten-
sions - ARBvertexprogram and GLEXT texture3D.

In this paper GPU based methods for 2D and 3D texture visual-
ization are presented. Developed techniques run directly on GPU.
Such an approach makes possible to decrease CPU load in case of
unsteady vector field and enables visualization applications to be
implemented on higher abstraction level. A comparison with ex-
isted 3D flow visualization technique is given.

In section 2 the paper continues with brief overview of programmed
geometry and texture object rasterization pipeline. Section 3 con-
tains explanation of IBFV technique. Section 4 presents method
for unsteady 2D vector field visualization and software application
based on this GPU technique. Section 5 introduces the idea of GPU-
based 3D flow visualization and gives comparison of this matter
with existing 3D imaging technique. Finally, Section 6 draws the
conclusion and outlines future work upon this problem.

2 Programmed Rasterization Pipeline

In this section we briefly discuss main stages of 3D rasterization
pipeline and outline its programmed features our techniques are
built upon.

There are three standard stages of graphic 3D pipeline, indepen-
dently from technology used: geometry primitives defining, vertex
and polygons processing and local illumination model estimation,
polygon rasterization and texture mapping in combination with per-
pixel fragment operations. These stages are then followed by num-
ber of fragment visibility tests - alpha tests, stencil buffer test and
Z-buffer test.

First stage defines a geometry object as associated set of vertexes
and faces that forms geometry model mesh (Fig.1, 1). Then goes
second pipeline phase - model-view transformations and vertex il-
lumination (Fig.1, 2). The hardware geometry engine computes
linear transformations, such as translation, rotation, and projection.
Local illumination models are also evaluated on a per-vertex basis
at this stage of the pipeline. Finally fragment rasterization and per-
pixel operations take place on 3 final stage of pipeline (Fig. 1, 3).

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/



Rasterization is the conversion of geometric object into fragments.
Note that although a fragment is closely related to a pixel, it may
be discarded by one of several per-fragment tests, such as alpha or
depth testing, before it becomes a pixel in the resulting image.

Figure 1: Three states of OpenGL graphic pipeline.

The current state-of-the-art 3D graphic platforms, such as nVIDIA
GeForce4/FX [NVIDIA 2003] ATI Radeon 9600/9700/9800 [ATI
2003], allow developer to override built-in processing for second
and third pipeline phases (Fig. 1, 2,3). During second pipeline
stage, OpenGL extension ARBvertexprogram makes possible a
dynamic calculation of per-vertex attributes, such as vertex po-
sition, normal, texture coordinates and e.t.c. In the same way,
ARB fragmentprogram extension enables user-defined fragment
processing on third phase. Consequently, vertex program provides
a means for texture advection by a dynamic computation of texture
mapping coordinate using GPU. Coming into use, fragment pro-
grams permit flexible texture operations, such as dependent texture
reads, to a greater extent, because of exploiting a per-pixel hardware
abstraction level.

It must be noticed that the plenty of 3D graphic low and medium-
level hardware enables vertex program execution on board, while
fragment programs execution (frequently called fragment shaders)
is a standard feature for only high-level graphic cards. However,
driven by latest advances in 3D industry, these two features will
probably be available to consumer in full measure.

3 Image Based Flow Visualization

This section follows with short overview of IBFV technique, since
our methods derive from it.

The IBFV (Image Based Flow Visualization) procedure was sug-
gested by Jarke van Wijk [van Wijk 2002]. Here we explain the
main concept of this technique. Consider in the general casen-
dimensional vector field (in further discussion we will layn = 2 or
3):

V(x, t) ∈ Rn,x∈ Rn, t ∈ R, (1)

and differential equation, supplied with proper initial condition
which describes dynamic system behaviour:

dp(t)
dt

= V(p(t), t), p(0) = p0 (2)

First order numerical approximation of this equation is a well-
known Eulerian formula for integrating with fixed time step∆t:

p(t +∆t) = p(t)+V(p(t), t)∆t. (3)

Laying tk = ∆tk we will have:

pk+1 = pk +V(pk, tk)∆t. (4)

Consider field of material valuesF(x, t), wherex∈ S. Its physical
meaning is a particle with material valueF(x, t) at locationx and

time momentt. As a rule, an abstract ”material value” is treated as
RGB triplet,weight or particle luminance and etc. We should note,
that the material value of a particle is stable in time and, evidently,
the next parity take place -F(pk+1, tk+1) = F(pk, tk) if pk+1, pk∈S.
In the general case we have:

F(pk+1, tk+1) =
{

F(pk, tk), i f pk ∈ S
0,else (5)

In the course of time, there will be a moment, when main part of
particlespk will have material valueF(x, t) equal to zero, sincepk
will drive outside domainSand a so-called ”wash-out” phenomena
(in terms of particle washed by the flow) will take place. To prevent
this phenomena we can take a convex combination of imageF(x, t)
and noise signalG(x, t):

F(pk+1, tk+1) = (1−α)F(pk, tk)+αG(pk+1, tk+1) (6)

After N successive iterations will have:

F(pn, tn) = (1−α)nF(p0, t0)+α

n−1

∑
i=0

G(pk−i , tk−i) (7)

First term can be set to zero by taking absolutely black start image
F(p0, t0) in order to prevent its influence on final image:

F(pn, tn) = α

n−1

∑
i=0

G(pk−i , tk−i) (8)

According to this equation, the colour of particlepn is a numerical
approximation of integral convolution of noise imageG(x, t) along
stream line of particlep with exponentially decaying kernel filter
α(1−α)i . Noise image should not contain high frequencies to gain
smooth and laminar visualization.

Figure 2: Texture mapping on node net.

Method implementation in OpenGL context represents an iterative
process during which distorted mesh with textureF mapped on it
is rasterized into the frame buffer. After that, using alpha blend-
ing mechanism, a convex combination of distorted textureF and
noise imageGk, k = 1,N, is performed. The resulting image is
temporarily stored and is involved in next procedure iteration. We
have slightly modified this technique by fixing mesh and generat-
ing texture coordinates for mesh points, instead, in accordance with
vector field values defined in mesh points. Mesh points with itsp
vector field valuesV(p, t) are shown on Fig. 2.

One step of backward integration along stream linep(t) leads to a
point pk−1 with texture coordinatespk−1 = pk− v(pk, t)∆t. This

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/



point is a previous in time position of particle in a flow. Further,
after time∆t, pk−1 moves topk. Such an approach allows to deal
with the problem from the position of Lagrangian-Eulerian advec-
tion [Jobard et al. 2002]. It is important to note, that this fact is
true only for points placed in mesh vertexes. Texture coordinates of
points inside mesh cell are calculated as bi-linear combination of
texture coordinates from corner cell points.

4 GPU Based 2D IBFV

This is a straightforward implementation of IBFV procedure
with OpenGL library extension ARBvertexprogram [ATI
2003], [NVIDIA 2003], which enables user-defined per-vertex op-
erations to be executed on graphic board. In terms of this extension
a vertex is characterised by 16 standard attributes. Among them are
vertex coordinate, weight, normal, texture coordinate, per-vertex
colour and etc. All mentioned attributes can be modified during ver-
tex program execution cycle. This modification take place within
GPU and does not affect central processing unit.

The main point of this GPU based technique lay in dynamic texture
coordinate estimation for mesh pointp. It is extremely suitable
to pass vector field valueV(p, t) in a vertex program as a normal
vector. So, the input data for vertex shader is mesh point coordinate
p and a mesh point normal, treated as valueV(p, t). The output data
is texture coordinate, calculated during work of GPU program:

ATTRIB inPos = vertex.attrib[0];//point coordinate -p
ATTRIB inNrm = vertex.normal;//point normal-vector valueV(p, t)

PARAM mvp[4] ={ state.matrix.mvp}; // model-view matrix
PARAM h ={ ... }; // time step value

OUTPUT out = result.position; // result position
OUTPUT tex = result.texcoord; // calculated texture coordinate

DP4 out.x, inPos, mvp[0]; // model-view transformation
DP4 out.y, inPos, mvp[1];
DP4 out.z, inPos, mvp[2];
DP4 out.w, inPos, mvp[3];

MAD tex,h,inNrm,in; // calculating texture coordinate

After mesh with texture mapped on it has been rasterized, the con-
tent of the frame buffer is blended with noise textureG to form
convex combination. The result is temporarily stored in new texture
object and is involved in next iteration as imageF . Performing tex-
ture coordinate calculation on GPU-side permits to decrease CPU
load during unsteady vector field visualization. Temporal flow field
changes, in contrast with IBFV, do not result in mesh or texture
coordinate recalculation. This approach enables stream pipeline vi-
sualization in case of unsteady vector field.

Within the framework on this method the software application
calledfVis has been written. This program implements both stan-
dard IBFV and GPU-based IBFV. User can interactively control vi-
sualization by adjusting key parameters of IBFV - number of noise
texturesGk, convex combination parameterα and absolute global
flow speed. During fVis maintenance incorrect blending operations
of ATI Radeon-family card has been revealed. Artifacts, appeared
on alpha-blending phase with RGB-textures and small values of al-
pha parameter, results in nondeterministic colour painting. To rem-
edy this support for a single-channel textures inGL LUMINANCE
format was added in fVis. UsingGL LUMINANCEtextures allows
to avoid chaotic texture painting.

fVis provides front advancing visualization using texture advection.
Front moves from the so-called seed line according to flow direction

Figure 3: 2D GPU visualizations with front advancing.

and speed, simulating a liquid matter injection. The example of
visualization is shown on Fig. 3.

5 GPU Based 3D IBFV

Figure 4: Stages of 3D GPU-based IBFV pipeline.

3D case requires textures with three dimensions, so, in contrast
with 2D IBFV, we deal with texture cubes. An obvious solution
for this problem is using OpenGL extension GLEXT texture3D,
which implements 3D texture concept. Texture cube can be treated
as 2D texture stack supplied by tri-linear interpolation - the texture
value in cube is interpolated not only between 4 points of 2D tex-
ture slice, but among two adjacent slices. Imaging of final result is
performed by volume rendering techniques [Hadwiger et al. 2002].

While generalizing our first method on three dimensional case we
have faced the problem ofα-blending image textureF with noise
signalG. Current rasterization pipeline provides only planar frame
buffer, thus making 3Dα-blending impossible. To overcome this
generic shortcoming we suggested performing 3Dα-blending as
series of independent 2Dα-blendings. Treating 3D texture as a pla-
nar texture stack allows decomposition of texture cube on a num-
ber of 2D textures and performingα-blendings with each texture
plane. Then the content of frame buffer is copied into appropriate
stack position in a new 3D texture and this texture cube is involved

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/



into next method iteration (Fig. 4). Consequently, each animation
frame consists of two phases - texture stack advection and texture
cube visualization.

Suggested way of graphic computations imply strong restrictions
on GPU performance. Trilinear interpolation in cooperation with
value fetching from 3D texture are very expensive operations, from
the computation point of view. Using texture cubes requires enough
room of memory on graphic boards. However, 3D texture exploit-
ing leads to more accurate and precise visualization.

Vertex program for 3D flow visualization is the same as in 2D case.
The only difference between them is the dimension of time steph
parameter. In case of 3D IBFV -h∈R3. The example of visualiza-
tion is shown on Fig. 5.

Figure 5: 3D GPU-based IBFV.

Method performance is approximately worse twice than standard
3D IBFV [Telea and van Wijk 2003]. This is caused by using 3D
textures, instead of 2D texture stack in 3D IBFV. Cube textures pro-
vide tri-linear interpolation, which enables accurate volume render-
ing and texture mapping. GPU based 3D IBFV handles unsteady
vector fields in contrast with 3D IBFV, thus making possible visu-
alization of data stream.

6 Conclusion and Future Work

We have presented two techniques for unsteady 2D and 3D vector
field visualization, exploiting graphic processing unit of a 3D accel-
erator. Work on problem of 2D GPU based method results in devel-
oping an application implementing this concept. During program
maintenance two main visualization task classes were revealed -
animated visualization of unsteady flow and front advancing simu-
lation with static background showing stream lines. So, we suppose
the case of 2D texture visualization is studied sufficient.

In case of 3D flow thoroughly code and algorithm optimization are
required for better performance and cognition power. 3D IBFV im-
plementation using OpenGL extension ARBfragmentprogramm

is the subject of special interest in this field. Orienting this tech-
nique on programmed rasterization phase we expect geometry re-
duction, thus making GPU based methods faster. Besides that,
brightness and contrast correction of the resulting image is re-
quired [Engel and Ertl 2002]. This can be done, in the same way
as texture advection, by the dependent texture reads technique em-
ploying fragment program.

We intend to continue our work on problem of GPU based visu-
alization and create a program which will combine presented 2D
and 3D GPU visualization techniques. This program will be used
for flow visualization of field data obtained during numerical simu-
lation of Azov Sea model at Laboratory of Computational Experi-
ment on Supercomputer, Computer Center of Rostov State Univer-
sity.

Acknowledgements

We acknowledge the support of Ministry of Industry, Science and
Technology of the Russian Federation under grant 37.011.11.0010,
as well as the support of the President of the Russian Federation
under grant MK1149.2003.01.

References

ANIKANOV, A. A., AND POTIY, O. A. 2003. Texture advection
for 3d flow visualization. InProceedings of GRAPHICON 2003,
MSU, 1–6.

ATI, 2003. Ati opengl extension support.

CABRAL , B., AND LEEDOM, L. C. 1993. Imaging vector fields
using line integral convolution. InProceedings of ACM SIG-
GRAPH 93,Computer Graphics Proceedings, Annual Confer-
ence Series, ACM, vol. 4, 263–272.

ENGEL, K., AND ERTL, T., 2002. Interactive high-quality volume
rendering with flexible consumer graphics hardware. EURO-
GRAPHICS 2002.

HADWIGER, M., KNISS, J. M., ENGEL, K., REZK-SALAMA , C.,
AND LANDIS, H., 2002. High-quality volume graphics on con-
sumer pc hardware. ACM SIGGRAPH 2002 Course #42 Notes,
July.

JOBARD, B., ERLEBACHER, G., AND HUSSAINI, M. Y. 2002.
Lagrangian-eulerian advection of noise and dye textures for un-
steady flow visualization.IEEE Transactions on Visualization
and Computer Graphics 8, 3, 211–222.

NVIDIA, 2003. Nvidia opengl extension specifications.

TELEA, A., AND VAN WIJK, J. J. 2003. 3d ibfv: Hardware-
accelerated 3d flow visualization. InProceedings of ACM SIG-
GRAPH 2003, ACM, 1–8.

VAN WIJK, J. J. 1991. Spot noise: Texture synthesis for data
visualisation.Computer Graphics 25, 4, 309–318.

VAN WIJK, J. J. 2002. Image based flow visualization.ACM
Transactions on Graphics 21, 3, 745–754.

International Conference Graphicon 2004, Moscow, Russia, http://www.graphicon.ru/


